

FN-LINK TECHNOLOGY LIMITED
5th Floor, A Building, Haoye Logistics Park,
Shugang Channel, Bao'an District,
Shenzhen City, CHINA

TEL: 86-0755-29558186 FAX: 86-0755-29558196 Website: www.fn-link.com

Product Specification

2.4GHz LOW POWER CONSUMPTION BT Module

Project Name	2.4GHz LOW POWER CO	2.4GHz LOW POWER CONSUMPTION BT Module				
Model NO	FN-CC2541	FN-CC2541				
Customer						
Customer's Part NO						
	•					
Approved: SYMEN SONG	Check: Jim Hu	Prepared: SJ LI				
	1	1				

Feedback of customer's Confirmation We accept the specification after Confirmed Customer name Customer signature Confirmation Date

CONTENT

0.	REVESION HISTORY	3
	INTRODUCTION	
	1.1 OVERVEIW	3
	1.2 ELECTRICAL CHARACTERISTICS	4
	1.3 GENERAL CHARACTERISTICS	4
	1.4 RF RECEIVE SECTION	5
	1.5 RF TRANSMIT SECTION	7
	1.6 RECOMMENDED OPERATING CONDITIONS	8
2.	MECHANICAL SPECIFICATION	8
	2.1 OUTLINE DRAWING	8
	2.2 CONNECTOR PIN DEFENITION	9
	2.3 LAYOUT REFERENCE	11
	2.4 LAYOUT CONNECTION DIAGRAM	
	PACKAGE	
	3.1 BLISTER PACKAGING/VACUUM PACKAGING	12
4.	USER'S MANUAL	13
	4.1 RECOMMENDED REFLOW PROFILE	13
	4.2 PATCH THE MODULES INSTALLED BEFORE THE NOTICE	13

0. Revision History

REV NO	Date	Modifications	Approved	Draft
Rev1.0	May.8th,2014		SYMEN SONG	SJ LI

1. Introduction

FN-CC2541 is 2.4GHz Bluetooth low power system on chip (SoC), support 250kbps, 500kbps, 1Mbps and 2Mbps data rate, with connecting budget excellent, but the front end the application, the output power can be programmed into the 0dBm, receiving 1Mbps with a sensitivity of -94dBm, mainly used in the 2.4GHz Bluetooth low energy system, personal 2.4GHz system, man-machine interface such as a keyboard, mouse, and remote control etc., sports and leisure equipment, mobile phone accessories and consumer electronics.

RFX2401

1.1 Overview

The block diagram for the module is shown in Figure 1. The modules can be roughly divided into one of three categories: CPU-related modules; modules related to power, test, and clock distribution; and radio-related modules.

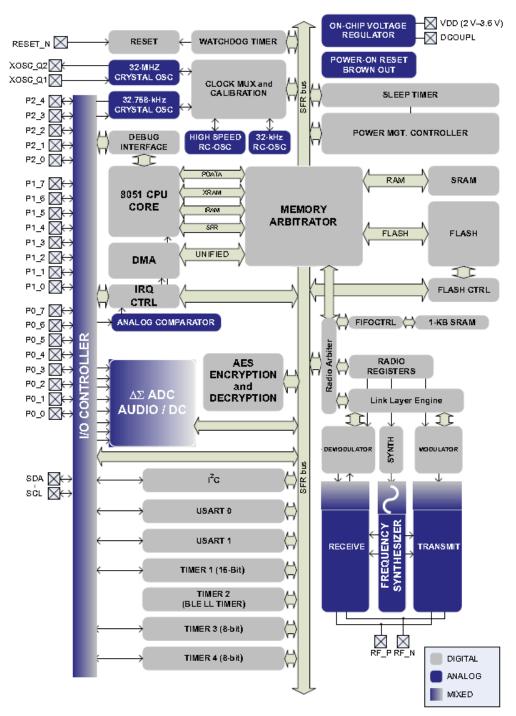


Figure 1. Block Diagram

1.2 ELECTRICAL CHARACTERISTICS

Measured on Texas Instruments CC2541 EM reference design with TA = 25°C and VDD = 3 V, 1 Mbps, GFSK, 250-kHz deviation, Bluetooth low energy mode, and 0.1% BER

PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
	RX mode, standard mode, no peripherals active, low MCU activity	1	7.9	
	RX mode, high-gain mode, no peripherals active, low MCU activity	2	20.2	mA
Core current consumption	TX mode, –20 dBm output power, no peripherals active, low MCU activity	1	6.8	IIIA
	TX mode, 0 dBm output power, no peripherals active, low MCU activity	1	8.2	
	Power mode 1. Digital regulator on; 16-MHz RCOSC and 32-MHz crystal oscillator off;	2	270	μΑ

	32.768-kHz XOSC, POR, BOD and sleep timer active; RAM and register retention		
	Power mode 2. Digital regulator off;16-MHz RCOSC and 32- MHz crystal oscillator off; 32.768-kHz XOSC, POR, and sleep timer active; RAM and register retention	1	
	Power mode 3.Digital regulator off;no clocks;POR active; RAM and register retention	0.5	
	Low MCU activity: 32-MHz XOSC running. No radio or peripherals. Limited flash access, no RAM access.	6.7	mA
	Timer 1. Timer running, 32-MHz XOSC used	90	
Peripheral current	Timer 2. Timer running, 32-MHz XOSC used	90	
consumption (Adds to core	Timer 3. Timer running, 32-MHz XOSC used	60	μΑ
current Icore for each peripheral unit activated)	Timer 4. Timer running, 32-MHz XOSC used	70	
	Sleep timer, including 32.753-kHz RCOSC	0.6	
	ADC, when converting	1.2	mA

1.3 GENERAL CHARACTERISTICS

Measured on Texas Instruments CC2541 EM reference design with TA = 25°C and VDD = 3 V

PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT		
WAKE-UP AND TIMING							
Power mode 1 → Active	Digital regulator on, 16-MHz RCOSC and 32-MHz crystal oscillator off. Start-up of 16-MHz RCOSC		4		μs		
Power mode 2 or 3 → Active	Digital regulator off, 16-MHz RCOSC and 32-MHz crystal oscillator off. Start-up of regulator and 16-MHz RCOSC		120		μs		
Active → TX or	Crystal ESR = 16 Ω . Initially running on 16-MHz RCOSC, with 32-MHz XOSC OFF		500		μs		
RX	With 32-MHz XOSC initially on	180		μs			
RX/TX turnaround	Proprietary auto mode	130					
KA/IA turriarouriu	BLE mode	150		μs			
RADIO PART							
RF frequency range	Programmable in 1-MHz steps	2379)	2496	MHz		
Data rate and modulation format Data rate and modulation format Data rate and modulation format Data rate and modulation format 1 Mbps, GFSK, 160-kHz deviation Data rate and modulation format 1 Mbps, GFSK, 160-kHz deviation 500 kbps, MSK 250 kbps, GFSK, 160-kHz deviation 250 kbps, MSK							

1.4 RF RECEIVE SECTION

Measured on Texas Instruments CC2541 EM reference design with TA = 25°C, VDD = 3 V, fc = 2440 MHz

PARAMETER TEST CONDITIONS	MIN TYP MAX	UNIT
---------------------------	-------------	------

Receiver				ī	
sensitivity		-90		dBm	
Saturation	BER < 0.1%	-1		dBm	
Co-channel rejection	Wanted signal at –67 dBm	-9		dB	
	±2 MHz offset, 0.1% BER, wanted signal –67 dBm	-2			
In-band blocking rejection	±4 MHz offset, 0.1% BER, wanted signal –67 dBm	36		dB	
	±6 MHz or greater offset, 0.1% BER, wanted signal –67 dBm	41			
Frequency error tolerance(1	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-300	300	kHz	
Symbol rate error tolerance(2)	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-120	120	ppm	
2 Mbps, GFSK, 320	-kHz Deviation, 0.1% BER				
Receiver sensitivity		-86		dBm	
Saturation	BER < 0.1%	-7		dBm	
Co-channel rejection	Wanted signal at –67 dBm	-12		dB	
In-band blocking rejection	±2 MHz offset, 0.1% BER, wanted signal –67 dBm	-1			
	±4 MHz offset, 0.1% BER, wanted signal –67 dBm	34		dB	
	±6 MHz or greater offset, 0.1% BER, wanted signal –67 dBm	39			
Frequency error tolerance(1	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-300	300	kHz	
Symbol rate error tolerance(2)	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-120	120	ppm	
1 Mbps, GFSK, 250	-kHz Deviation, <i>Bluetooth</i> low energy Mode, 0.1% B	BER			
Receiver	High-gain mode	-94			
sensitivity(3) (4)	Standard mode	-88		dBm	
Saturation(4)	BER < 0.1%	5		dBm	
Co-channel rejection	Wanted signal at –67 dBm	-6		dB	
•	±1 MHz offset, 0.1% BER, wanted signal –67 dBm	-2			
In-band blocking	±2 MHz offset, 0.1% BER, wanted signal –67 dBm	26		۷ D	
rejection	±3 MHz offset, 0.1% BER, wanted signal –67 dBm	34	4 dB		
	>6 MHz offset, 0.1% BER, wanted signal –67 dBm	33			
Outstleed	Minimum interferer level < 2 GHz (Wanted signal –67 dBm)	-21			
Out-of-band blocking rejection(4)	Minimum interferer level [2 GHz, 3 GHz] (Wanted signal –67 dBm)	-25		dBm	
10,000,011(±)	Minimum interferer level > 3 GHz (Wanted signal –67 dBm)	-7			
Intermodulation(4)	Minimum interferer level	-36		dBm	
				1	

Frequency error tolerance(1	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-250	250	kHz
Symbol rate error tolerance(2)	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-80	80	ppm
1 Mbps, GFSK, 160	-kHz Deviation, 0.1% BER			
Receiver sensitivity(7)		-91		dBm
Saturation	BER < 0.1%	0		dBm
Co-channel rejection	Wanted signal 10 dB above sensitivity level	-9		dB
	±1 MHz offset, 0.1% BER, wanted signal –67 dBm	2		
In-band blocking	±2 MHz offset, 0.1% BER, wanted signal –67 dBm	24		dB
rejection	±3 MHz offset, 0.1% BER, wanted signal –67 dBm	27		GD.
	>6 MHz offset, 0.1% BER, wanted signal –67 dBm	32		
Frequency error tolerance(1	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-200	200	kHz
Symbol rate error tolerance(2)	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-80	80	ppm
500 kbps, MSK, 0.1	% BER			
Receiver sensitivity(7)		-99		dBm
Saturation	BER < 0.1%	0		dBm
Co-channel rejection	Wanted signal at –67 dBm	-5		dB
	±1-MHz offset, 0.1% BER, wanted signal –67 dBm	20		
In-band blocking rejection	±2-MHz offset, 0.1% BER, wanted signal –67 dBm	27		dB
	>2-MHz offset, 0.1% BER, wanted signal –67 dBm	28		
Frequency error tolerance(1	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-150	150	kHz
Symbol rate error tolerance	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-80	80	ppm
250 kbps, GFSK, 10	60 kHz Deviation, 0.1% BER			
Receiver sensitivity (8)		-98		dBm
Saturation	BER < 0.1%	0		dBm
Co-channel rejection	Wanted signal at –67 dBm	-3		dB
	±1-MHz offset, 0.1% BER, wanted signal –67 dBm	23		
In-band blocking rejection	±2-MHz offset, 0.1% BER, wanted signal –67 dBm	28		dB
	>2-MHz offset, 0.1% BER, wanted signal –67 dBm	29		
Frequency error tolerance(9)	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-150	150	kHz
Symbol rate error tolerance(10)	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-80	80	ppm
250 kbps, MSK, 0.1	% BER			
•				

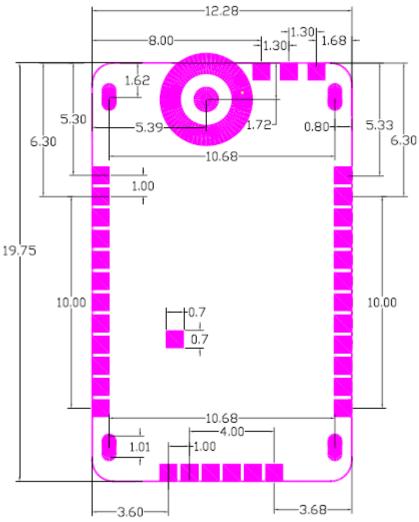
Receiver sensitivity (11)		-99		dBm
Saturation	BER < 0.1%	0		dBm
Co-channel rejection	Wanted signal at -67 dBm	-5		dB
	±1-MHz offset, 0.1% BER, wanted signal –67 dBm	20		
In-band blocking rejection	±2-MHz offset, 0.1% BER, wanted signal –67 dBm	29		dB
-	>2-MHz offset, 0.1% BER, wanted signal –67 dBm	30		
Frequency error tolerance	Including both initial tolerance and drift. Sensitivity better than –67dBm, 250 byte payload. BER 0.1%	-150	150	kHz
Symbol rate error tolerance	Maximum packet length. Sensitivity better than–67dBm, 250 byte payload. BER 0.1%	-80	80	ppm
ALL RATES/FORM	ATS			
Spurious emission in RX.Conducted measurement	f < 1 GHz	-67		dBm
Spurious emission in RX.Conducted measurement	f > 1 GHz	-57		dBm

- (1) Difference between center frequency of the received RF signal and local oscillator frequency
- (2) Difference between incoming symbol rate and the internally generated symbol rate
- (3) The receiver sensitivity setting is programmable using a TI BLE stack vendor-specific API command. The default value is standard mode.
- (4) Results based on standard-gain mode.
- (5) Difference between center frequency of the received RF signal and local oscillator frequency
- (6) Difference between incoming symbol rate and the internally generated symbol rate
- (7) Results based on high-gain mode.
- (8) Results based on standard-gain mode.
- (9) Difference between center frequency of the received RF signal and local oscillator frequency
- (10) Difference between incoming symbol rate and the internally generated symbol rate
- (11) Results based on high-gain mode.

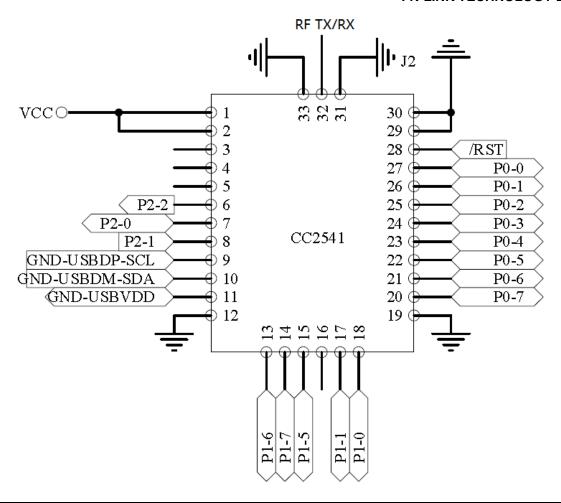
1.5 RF TRANSMIT SECTION

Measured on Texas Instruments CC2541 EM reference design with TA = 25°C, VDD = 3 V and fc = 2440 MHz

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Output power	Delivered to a single-ended 50- Ω load through a balun using maximum recommended output power setting	8	dBm
Output power	Delivered to a single-ended 50- Ω load through a balun using minimum recommended output power setting	-20	
Programmable output power range	Delivered to a single-ended 50- Ω load through a balun using minimum recommended output power setting	20	dB
	f < 1 GHz	-52	alD.sa
Spurious emission conducted	f > 1 GHz	-48	dBm
measurement	Suitable for systems targeting compliance with worldw regulations ETSI EN 300 328 and EN 300 440 Class 2 15 (US), and ARIB STD-T66 (Japan)		7 Part
Optimum load impedance	Differential impedance as seen from the RF port (RF_P and RF_N) toward the antenna	70 +/-30	Ω


1.6 RECOMMENDED OPERATING CONDITIONS

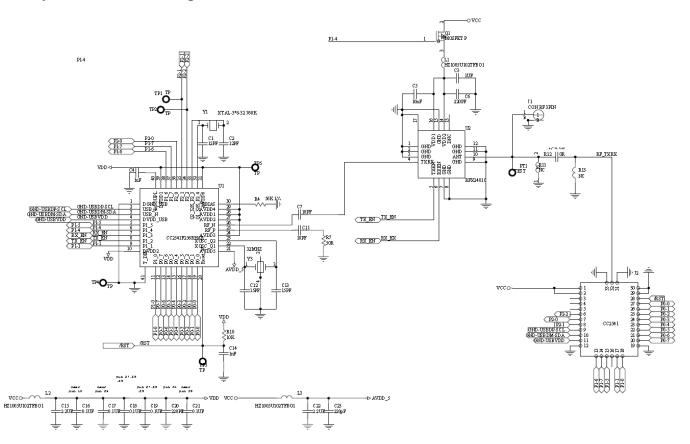
over operating free-air temperature range (unless otherwise noted)


	MIN	NOM MAX	UNIT
Operating ambient temperature range, TA	-30	70	°C
Operating supply voltage	2	3.6	V

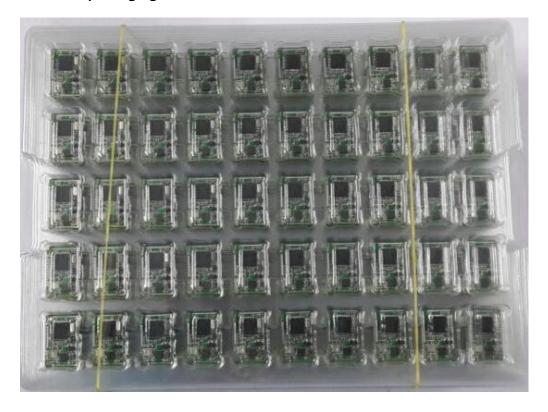
2. Mechanical Specification

2.1 Outline Drawing

2.2 Connector Pin Definition


Pin #	Name	Description
1	VCC	2-3.6V
2	VCC	2-3.6V
3	NC	NOP
4	NC	NOP
5	NC	NOP
6	P2-2	
7	P2-0	
8	P2-1	
9	GND	USBDP-SCL
10	GND	USBDM-SDA
11	GND	USBVDD
12	GND	GND
13	P1-6	

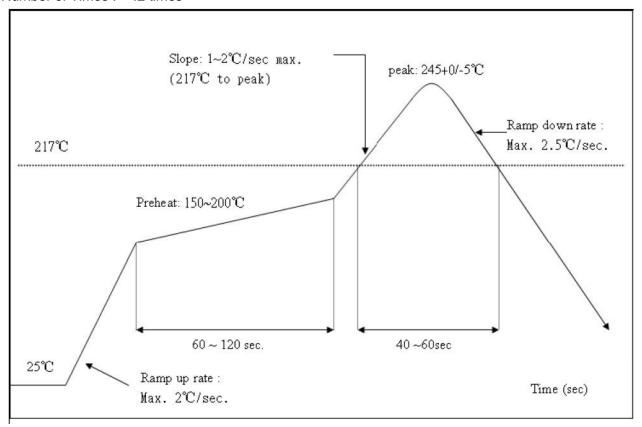
	T	
14	P1-7	
15	P1-5	
16	NC	NOP
17	P1-1	
18	P1-0	
19	GND	GND
20	P0-7	
21	P0-6	
22	P0-5	
23	P0-4	
24	P0-3	
25	P0-2	
26	P0-1	
27	P0-0	
28	RST	RESET
29	GND	GND
30	GND	GND
31	GND	J2
32	TX/RX	RF TX/RX
33	GND	GND


2.3 Layout reference

2.4 Layout Connection diagram

3 Package 3.1 blister packaging

Vacuum packaging


A piece of 50 PCS (500 pcs/bag)

4 User's Manual

4.1 Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250°C Number of Times : ≤2 times

4.2 Patch the modules installed before the notice:

Module installed note:

- 1. Please press 1:1 and then expand outward proportion to 0.7 mm, 0.12 mm thickness When open a stencil
- 2. Take and use the module, please insure the electrostatic protective measures.
- 3. Reflow soldering temperature should be according to the customer the main size of the products, such as the temperature set at 250 + 5 °C for the MID motherboard.

About the module packaging, storage and use of matters needing attention are as follows:

- 1. The module of the vacuum packing: 1). Shelf life: 8 months, storage environment conditions: temperature in: $< 40 \, ^{\circ}$ C, relative humidity: < 90% r.h.
- 2. The module vacuum packing once opened, time limit of the assembly:

Card: 1) check the humidity display value should be less than 30% (in blue), such as: 30% ~ 40% (pink), or greater than 40% (red) the module have been moisture absorption.

- 2.) factory environmental temperature humidity control: ≤ 30% °C, ≤ 60% r.h..
- 3). Once opened, the workshop the preservation of life for 168 hours.
- 3. Once opened, such as when not used up within 168 hours:
- 1). The module must be again to remove the module moisture absorption.
- 2). The baking temperature: 125 $^{\circ}$ C, 8 hours.
- 3.) after baking, put the right amount of desiccant to seal packages.